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概要
n 成分の絡み目 L と n 個の結び目 Ki(i = 1, 2, ..., n) に対して 2 次元結び目を次のように定
める. R3 に標準的に埋め込まれた S2 上の L の図式それぞれの成分に対し, i 番目の成分の管
状近傍を (Ki のタングル図式 ) × S1 に置き換える. このようにして表される図式を持つ 2 次
元結び目を一般化 Iwakiri-Satoh 2-knotという. 一般化 Iwakiri-Satoh 2-knotは deform-spun

knot であり, twist-roll-spun knot は一般化 Iwakiri-Satoh 2-knot である. 本講演では一般
化 Iwakiri-Satoh 2-knot の四面体カンドルに対するカンドルコサイクル不変量を L および
Ki(i = 1, 2, ..., n)の不変量で表せることを紹介する.

1 導入
球面 S2 の 4 次元ユークリッド空間 R4 への滑らかな埋め込みの像を 2 次元結び目 (2-knot) と呼
ぶ. 2 次元結び目に対して, 1次元結び目 (1-knot) と同様に, 結び目の補空間の基本群から有限群へ
の準同型写像の個数が不変量として古典的に用いられてきた. その後, 1980 年代にカンドルが導入
されて, 結び目の基本カンドルから有限カンドルへ準同型写像の個数であるカンドル彩色数という不
変量が上記の不変量の精密化として導入された. さらに, 1990 年代に Carter, Jelsovsky, Kamada,

Langford, Saito [1, 2] によってカンドルのコサイクルを用いてカンドル彩色数の精密化であるカン
ドルコサイクル不変量が定義された.

一方, 2011年に Iwakiri, Satoh [5]は 2つの 1次元結び目から 2次元結び目を得る次のような構成
法を与えている. 2つの枠付き有向結び目 K,K ′ に対して, R3 へ標準的に埋め込まれた球面 S2 上に
描かれた K ′ の図式の管状近傍を (K のタングル図式)× S1 に置き換えて, K ′ の図式の交点の近傍
を図 1のモーションピクチャが表す図式に置き換えることによって構成される 2次元結び目を岩切–

佐藤の 2次元結び目 (Iwakiri–Satoh 2-knot)という.

本稿では, Iwakiri–Satoh 2-knotの構成法においてK ′ を n成分の枠付き有向絡み目 L, K を n個
の枠付き有向結び目の組 {Ki}(1 ≤ i ≤ n)に置き換える操作によって得られる一般化を行った一般
化 Iwakiri–Satoh 2-knotF ({Ki}, L)を導入した. この一般化 Iwakiri–Satoh 2-knotについて 4面体
カンドル Q4 に対するコサイクル不変量の値が {Ki}のコサイクル不変量や Lの成分の絡み数などを
用いて表されることを示した (定理 2.2).
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1.1 Iwakiri–Satoh 2-knot

K,K ′ を枠付き有向結び目とし, その枠 (framing)を fK , fK′ で表す. DをK から 1点の近傍を取
り除いた [0, 1]2 上の black board framingが fK となる 1-タングル図式, D′ をK ′ の二次元球面 S2

上の black board framingが fK′ となる図式とする. R3 に標準的に埋め込まれた S2 にD′ が描かれ
ているとする. D′ の管状近傍を D × S1 に置き換え, D′ の交点の近傍を図 1 のように置き換える.

この部分の図式は D の 2つの連結和について片方の D をもう一方の D の中を通すようなモーショ
ンピクチャによって表されるものである. このようにしてできる 2-knotの図式で 2-knot F (K,K ′)

を定め, これを Iwakiri–Satoh 2-knotと呼ぶことにする. この Iwakiri–Satoh 2-knotは Iwakiri,

Satoh [5]によって定義された.

図 1 F (K,K′)の交点における変形

この構成法において K ′ を n 成分の枠付き有向絡み目 L, K を n 個の枠付き有向結び目の組
{Ki}(1 ≤ i ≤ n)に置き換え, Lの第 i成分 Li に対して Li の管状近傍をKi × S1 に置き換える操作
をして得られる 2-knotの図式で 2-knot F ({Ki}, L)を定め, これを一般化 Iwakiri–Satoh 2-knot

と呼ぶことにする.

Iwakiri–Satoh 2-knotに対して以下のことが知られている.

注 1.1. Iwakiri–Satoh 2-knotは deform-spun knotである [5] .

注 1.2. roll-spun knotは Iwakiri–Satoh 2-knotである [5] .

これらと同様にして以下のことがわかる.

補題 1.3. 一般化 Iwakiri–Satoh 2-knotは deform-spun knotである.

補題 1.4. twist-roll-spun knotは一般化 Iwakiri–Satoh 2-knotである .



1.2 カンドル・カンドルコサイクル不変量
集合X とその二項演算 ∗ : X ×X → X が以下の 3条件を満たすとき組 (X, ∗)をカンドルと呼ぶ.

• 任意の x ∈ X に対して, x ∗ x = xである.

• 任意の y ∈ X に対して, 写像 Sy : X → X, Sy(x) = x ∗ y は全単射である.

• 任意の x, y, z ∈ X に対して, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)である.

正 4面体の頂点の集合 {0, 1, 2, 3}に対し, Sx を xを中心に 120度回転させる写像と定めるとカン
ドルとなる. このカンドルを 4面体カンドルと言い, Q4 で表す.

図 2 4面体カンドル Q4 の定義

DK を結び目K の図式, X をカンドルとする. 写像 C : {DKの弧 } → X がDK のX 彩色である
とは, 任意の交点で図 3の左図の状況を満たすことである. DK の X 彩色全体を ColX(DK)と表す.

ColX(DK)の位数は, DK の取り方によらずに定まることが知られており, これを K の X 彩色数と
いい, #ColX(K)で表す.

同様に DF を結び目 F の図式とする. 写像 C : {DFのシート } → X が図 3の中図の状況を満た
すとき X 彩色という. ColX(DF )と #ColX(F )も同様に定義される.

また, DK を結び目 K の図式とする. 写像 C : {DKの弧 } ⊔ {R2 −DKの連結な領域 } → X が
シャドー X 彩色であるとは, C の定義域を {DKの弧 }に制限した写像が X 彩色であり, R2 −DK

の領域に対して図 3の右図の状況を満たすことを言う. シャドー X 彩色は X 彩色と R2 −DK の非
有界領域へ与える元を定めると唯 1つに決定されることが知られている.

図 3 彩色条件

X をカンドル, Aをアーベル群とする (演算は和でかく). 写像 ψ : X2 → Aが 2-コサイクルであ
るとは, 任意の x, y, z ∈ X に対して, ψ(x, x) = 0, ψ(x, y) + ψ(x ∗ y, z) = ψ(x, z) + ψ(x ∗ z, y ∗ z)
を満たすことである. また, 写像 ϕ : X3 → Aが 3-コサイクルであるとは, 任意の x, y, z, w ∈ X に



対して, ϕ(x, x, y) = ϕ(x, y, y) = 0, ϕ(x, y, w)+ϕ(x ∗ y, z, w)+ϕ(x ∗w, y ∗w, z ∗w) = ϕ(x, z, w)+

ϕ(x ∗ z, y ∗ z, w) + ϕ(x, y, z)を満たすことである.

Q4 を四面体カンドルとする. ψ1 を H2
Q(Q4;Z/2Z) ∼= Z/2Zの非自明なコホモロジーを与える 2-

コサイクルとする (arXiv上の [2]の第 2版). また, H3(Q4;Z/4Z)に対する普遍係数定理は以下のよ
うになる.

Ext(H2(Q4;Z);Z/4Z) −→ H3(Q4;Z/4Z) −→ Hom(H3(Q4;Z);Z/4Z)

Ext(H2(Q4;Z);Z/4Z) ∼= Z/2Z の生成元を与える元の H3(Q4;Z/4Z) における像を ϕ3 とおく.

Hom(H3(Q4;Z);Z/4Z) ∼= Z/4Z⊕ Z/2Zなので位数 4の元の H3(Q4;Z/4Z)における逆像を ϕ1 と
おく. また, 位数 2の元で, 「別の元の 2倍」にならない元を取り, そのH3(Q4;Z/4Z)における逆像
を ϕ2 とおく.

例として, ϕ1 : Q3
4 → Z/4Zを 1つ固定して具体的に記述すると次のようになる.(

(ϕ1(0, i, j))i,j=0,1,2,3, (ϕ1(1, i, j))i,j=0,1,2,3, (ϕ1(2, i, j))i,j=0,1,2,3, (ϕ1(3, i, j))i,j=0,1,2,3

)

=




· · · ·
0 · 0 0
1 0 · 0
1 1 1 ·

 ,


· 0 0 0
· · · ·
1 0 · 0
1 1 1 ·

 ,


· 1 0 0
0 · 0 −1
· · · ·
1 1 2 ·

 ,


· −1 1 1
0 · −1 0
−1 1 · 0
· · · ·




本稿では他のコサイクル ψ1 : Q2
4 → Z/2Z, ϕ2 : Q3

4 → Z/2Z, ϕ3 : Q3
4 → Z/2Z も同様に具体的に 1

つ固定しておくことにする.

X を有限カンドル, Aをアーベル群とし, 演算を積で書く. 結び目K の図式をDK , DK のX 彩色
を C, X の 2-cocycleを ψ とする. DK の交点に対して図 4のようにウェイトWψ(x, C)を与える.

図 4 1次元結び目のカンドルコサイクル不変量のウェイトの定義

このとき, Ψψ(DK ;C) :=
∏

x:DKの交点Wψ(x, C)とおく. さらに, Ψψ(K) :=
∑
C∈ColX(K) Ψψ(DK ;C)

とおくとこれは結び目の不変量であることが知られており, これを結び目 K のカンドルコサイクル
不変量と呼ぶ [1, 2].

同様に, 2次元結び目 F の図式を DF , DF の X 彩色を C, X の 3-cocycleを ϕとする. DF の 3

重点に対して図 5のようにウェイトWϕ(t, C)を与える.

図 5 2次元結び目のカンドルコサイクル不変量のウェイトの定義

このとき, Φϕ(DF ;C) :=
∏
t:DFの 3 重点Wϕ(t, C)とおく. さらに, Φϕ(F ) :=

∑
C∈ColX(F ) Φϕ(DF ;C)



とおくと, これは 2次元結び目の不変量であることが知られておりこれを 2次元結び目 F のカンド
ルコサイクル不変量と呼ぶ [1, 2].

結び目 K の図式を DK , DK のシャドー X 彩色を C, C によって R2 −DK の非有界領域へ与え
られる元を x0, X の 3-cocycle を ϕとする. DK の交点に対して図 6のようにウェイトWϕ(x

∗, C)

を与える.

図 6 シャドーコサイクル不変量のウェイトの定義

このとき, Ψx0

ϕ (DK ;C) :=
∏

x∗:DKの交点Wϕ(x
∗, C)とおく. さらに,Ψx0

ϕ (K) :=
∑
C∈ColX(K) Ψ

x0

ϕ (DK ;C)

とおくとこれは結び目の不変量であることが知られておりこれを結び目 K のシャドーコサイクル不
変量と呼ぶ [4]. また, X が Q4 の場合, Ψx0

ϕ (DK ;C)が非有界領域へ与えられる元によらないことが
知られているため, Ψ∗

ϕ(DK ;C) := Ψx0

ϕ (DK ;C), Ψ∗
ϕ(K) := Ψx0

ϕ (K)と書くことにする.

2 主結果
一般化 Iwakiri–Satoh 2-knot F = F ({Ki}, L) の Q4 に対する彩色とカンドルコサイクル不変量
についての結果を示す. 彩色については以下のとおりである.

命題 2.1. Ki, Li に対し, その枠を fKi , fLi , lk(Li, Lj) で Li と Lj の絡み数 (i = j のとき
lk(Li, Li) = fLi

)とする. F の Q4 彩色について以下が成り立つ.

1. ColQ4
(F )と ⊔

a∈Q4

∏
1≤i≤n ColQ4

(DKi
, a)ri は 1対 1に対応する.

2. #ColQ4(F ) = 4×
∏

1≤i≤n{#ColQ4(Ki)/4}ri

ただし, ColQ4
(DK , a)でK のタングル図式DK の端点を a ∈ Q4とした彩色の集合, riは

∑
j fKj

×
lk(Li, Lj)が 3の倍数のとき 1, 3の倍数でないとき 0を返す関数である.

次に F = F ({Ki}, L)の Q4 に対するカンドルコサイクル不変量についての結果は以下のとおりで
ある.

定理 2.2. 1. 任意の C ∈ ColQ4
(F )について

Φϕ(F ({Ki}, L), C) =

∑
i,j

lk(Li, Lj) · {fKj
·Ψ∗

ϕ1
(Ki, Ci) + ι2(Ψψ1

(Ki, Ci)Ψψ1
(Kj , Cj))} ∈ Z/4Z (if ϕ = ϕ1)∑

i,j

lk(Li, Lj) · fKj · {Ψ∗
ϕ2
(Ki, Ci) + Ψψ1(Ki, Ci)} ∈ Z/2Z (if ϕ = ϕ2)

0 ∈ Z/2Z (if ϕ = ϕ3)



2. Φϕ(F ({Ki}, L)) =
∑
C∈ColQ4

(F ) Φϕ(F ({Ki}, L), C)
ただし, C ∈ ColQ4

(Ki) に対し, Ψψ(Ki, Ci) で Ci で彩色された K のカンドルコサイクル
不変量を表し, Ψ∗

ϕ(Ki, Ci) で Ci で彩色された K のシャドーコサイクル不変量を表す. また,

ι2 : Z/2Z → Z/4Zを 2倍写像とする. また, Q4 の 2-コサイクル ψ1, Q4 の 3-コサイクル ϕ1, ϕ2, ϕ3

は導入で固定したものとする.

このことから, 今回の主定理の系として任意の twist-roll-spun knotの 4面体カンドルに対するコ
サイクル不変量の具体的な表示を求めることができる. r-twist-s-roll-spun knot τ rρsK に対して, r

が 3の倍数でないとき Φϕ(τ
rρsK) = 4であり, r が 3の倍数のときは以下のようになる.

系 2.3.

Φϕ(τ
rρsK) =


∑

ColQ4
(K)

−{r ·Ψ∗
ϕ1
(K,C) + s · ι2(Ψψ1

(K,C))}

∑
ColQ4

(K)

−r · {Ψ∗
ϕ2
(K,C) + Ψψ1(K,C)}
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